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Much of quantum mechanics may be derived if one adopts a very strong form of Mach's
principle such that in the absence of mass, space-time becomes not flat but stochastic. This
is manifested in the metric tensor which is considered to be a col1.ection of stochastic varia-
bles. The stochastic-metric assumption is sufficient to generate the spread of the wave
packet in empty space. If one further notes that all observations of dynamical variables in
the laboratory frame are contravariant components of tensors, and if one assumes that a
Lagrangian can be constructed, then one can obtain an explanation of conjugate variables and
al, so a derivation of the uncertainty principle. Finally, the superposition of stochastic
metrics and the identification of v'-g in the four-dimensional invariant volume element
v'-g dV as the indicator of relative probability yields the phenomenon of interference as will
be described for the two-slit experiment.

I. INTRODUCTION

When considering the quantum and relativity the-
ories, it is clear that only one of them, namely
relativity, can be considered, in the strict sense,
a theory Qua. ntum mechanics, eminently success-
ful as it is, was laboriously developed by a number
of people as an operational description of physical
phenomena. It is composed of several principles,
equations, and a set of interpretive postulates. '
These elements of quantum mechanics are justifi-
able only in that they work. Attempts" to create
a complete, self-consistent theory for quantum
mechanics are largely unconvincing. There are in
addition a number of points where quantum me-
chanics yields troublesome results. Problems
arise when considering the collapse of the wave
function, as in the Einstein-Podolsky-Rosen para-
dox. ' Problems also arise when treating macro-
scopic systems, as in the Schrodinger cat para-
dox' and the Wigner paradox. ' Finally, quantum
theory is not overly compatible with general rela-
tivity. '

One way of imposing some quantum behavior on
general relativity is commonly the following: The
uncertainty relation for time and energy implies
that at any point in space one can "borrow" any
amount of energy from the vacuum if it is bor-
rowed for a sufficiently short period of time.
This energy fluctuation of the vacuum then gives
rise to metric fluctuations via the general-rela-
tivity field equations. One then has, among other
things, a vacuum filled with virtual Schwarzschild
singularities. This can be awkward.

An alternative approach is to impose ab initio
an uncertainty on the metric tensor, and to see if
by that uncertainty the results of quantum mechan-

ics can be deduced. As this paper will show, with
a few not particularly unreasonable assumptions
a large segment of the formalism of the quantum
theory can be derived and, more importantly,
understood.

Mathematical spaces with stochastic metrics
have been investigated earlier by Schweizer' for
Euclidean spaces, and by March"' for Minkowski
space. In a recent paper by Blokhintsev, "the ef-
fects on the physics of a space with a small sto-
chastic component are considered. It is our goal,
however, not to show the effects on physical 1aws
of a stochastic space, but to show that the body of
quantum mechanics can be deduced from simply
imposing stochasticity on the space-time.

Our method will be to write down (in Sec.
II) a number of statements (theorems, postu-
lates, etc.) which are the fundamentals of the the-
ory. We will then (in Sec. III) describe the state-
ments and indicate proofs where the statements
are theorems rather than postulates. Finally (in
Sec. IV) we will derive some physical results,
namely, the spread of the free particle (in empty
space), the uncertainty principle, and the phe-
nomenon of interference. The paper concludes
(Sec. V) with a general discussion of the approach
and a summary of results.

II. THE STATEMENTS

Statement 1, Mach's painciPle (Erederick's ver
s40n).
1.1. In the absence of mass, space-time becomes
not flat, but stochastic.
1.2. The stochasticity is manifested in a stochas-
tic metric g;&.
1.3. The mass distribution determines not only
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the space-time geometry, but also the space-time
stochasticity.
1.4. The more mass in the space-time, the less
stochastic the space-time becomes.
1.5. At the position of a mass "point", the space-
time is not stochastic.

Statement 2, the contravariant observable theo-
rem. All measurements of dynamical variables
correspond to contravariant components of ten-
sors.

Statement 3, the metric probability postulate.
P(x, t) =As'-g, where for a one-particle system
P(x, t) is the parti«ie probability distribution. A
is a real-valued function, and g is the determi-
nant of the metric.

Statement 4, the metric superposition postulate.
If at the position of a particle the metric due to a
specific physical situation is g, ~(1) and the metric
due to a different physical situation is g, ~(2), then
the metric at the position of the particle due to
the presence of both of the physical situations is
z;p(3),

r;a(3) = HZ;. (I)+g;a(2) l .
Statement 5, the metric 4 postulate. There

exists a local complex diagonal coordinate system
in which a component of the metric at the location
of the particle in the wave function 0 .

III. DESCRIPTION OF THE STATEMENTS

Statement 1, Mach's principle, is the basic pos-
tulate for our theory. It should only be added that re-
quirement 1.5, that at the position of a mass point
the space-time be not stochastic, is to ensure
that an elementary mass particle (proton, quark,
etc.) be bound.

Statement 2, the contravariant observable the-
orem, is also basic. It is contended, and the con-
tention will be weakly proved, that, measurements
of dynamical variables are contravariant compo-
nents of tensors. By this we mean that whenever
a measurement can be reduced to a displacement
in a coordinate system, it can be related to con-
travariant components of the coordinate system.
Of course, if the metric g;, is well known, one
can calculate both covariant and contravariant
quantities. In the real world, however, the quan-
tum uncertainties in the mass distribution imply
that the metric cannot be accurately known, so
that measurements can only be reduced to contra-
variant quantities. Also, in our picture the metric
is stochastic, so again we can only use contravar-
iant quantities. We will verify the theorem for
Minkowski space by considering an idealized mea-
surement. Before we do, however, consider as
an example the case of measuring the distance to

a Schwarzschild singularity (a black hole) in the
Galaxy. Let the astronomical distance to the ob-
ject be 7(-='P). The covariant equivalent of the
radial coordinate x is g„and

so that the contravariant distance to the object is

while the covariant distance is

It is clear that here only the contravariant dis-
tance is observable.

Returning to the theorem, note that when one
makes an observation of a dynamical variable
(e.g. position, momentum, etc.), the measurement
is usually in the form of a reading of a meter, or
something similar. It is only through a series of
calculations that one can reduce the datum to, say,
a displacement in a coordinate system. For this
reduction to actually represent a measurement
(in the sense of Margenau") it must satisfy two re-
quirements. It must be instantaneously repeatable
with the same results, and it must be a quantity
which can be used in expressions to derive physi-
cal results (i.e. , it must be a physically "useful"
quantity). It will be shown that for Minkowski
space, the derived *'useful" quantity is contra-
variant.

Note first (Fig. 1) that for an oblique coordinate
system, the contravariant coordinates of a point
V are given by the parallelogram law of vector
addition, while the covariant components are ob-
tained by orthogonal projection onto the axes."

We shall now consider an idealized measure-
ment in special relativity, i.e. , Minkowski space.
Consider the space-time diagram of Fig. 2. We
are given that in the coordinate system x', t', an
object (m, n) is at rest. If one considers the situ-

Xl

FIG. i. Covariant and contravariant components in
oblique coordinates.
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ation from a coordinate system x, t traveling with
velocity v along the x' axis, one has the usual
Minkowski diagram" with coordinate axes Ox and
Ot and velocity v =tann (where the units are
chosen such that the velocity of light is unity). OC
is part of the light cone.

Noting that the unprimed system is a suitable
coordinate system in which to work, we now drop
from consideration the original x', t' coordinate
system.

We wish to determine the "length" of the object
in the x, t coordinate system. Let it be arranged
that at time t(0) a photon shall be emitted from
each end of the object (i.e. , from points E and B).
The emitted photons mill intercept the I; axis at
times t(1) and t(2). The observer then deduces
that the length of the object is t(2) -t(1) (where c
= 1). The question is: What increment on the x
axis is represented by the time interval t{2)—t(1)?
One should note that the arrangement that the pho-
tons be emitted at time f(0) is nontrivial, but that
it can be done in principle. For the present, let
it simply be assumed that there is a person on the
object who knows special relativity and who knows
how fast the object is moving with respect to the
coordinate system. This person then calculates
when to emit the photons so that they will be

'emitted simultaneously with respect to the x, t
coordinate system.

Consider now Fig. 3, which is an analysis of the
measurement. Figure 3 is just Fig. 2 with a few
additions. The principal additions are the contra-
variant coordinates of E and J3, x' and x' respec-
tively. We assert, and it is easily shown, that
t(2) -t(1)=x'-x'. This is seen by noticing that
x'-x'= line segment B,F, and that triangle t(2),
t(0), Z is congruent to triangle B,t(0),Z. How

ever, if we consider the covariant coordinates,
we notice that x, -x, =x -x'. This is not surpris-
ing since coordinate differences (such as x, -x,)
are by definition (in flat space) contravariant
quantities. To verify our hypothesis we must con-
sider not coordinate differences which automati-
cally satisfy the hypothesis, but the coordinates
themselves. Consider a measurement not of the
length of the object, but of the position (of the
trailing edge m) of the object. Assume again that
at time t(0) a photon is emitted at E and is re-
ceived at t(1). The observer would then determine
the position of m at t(0) by simply measuring off
the distance t(1) —t(0) on the x axis. Notice that
this would coincide with the contravariant quantity
x'. To determine the corresponding covariant
quantity x„one would need to know the angle n
(which is determined by the metric).

The metric g,~ is defined as e, e~, where e, and

e~ are the unit vectors in the directions of the co-
ordinate axes x' and x~. Therefore, in order to
consider an uncertain metric, we can simply con-
sider that the angle a is unknown or uncertain. In
this case measurement x' is still well defined
[x' = t(1) —t{0)], but now there is no way to deter-
mine x, because it is a function of the angle o.. In
this case then, only the contravariant components
of position are measureable. [It is also easy to
see from geometry that if one were to use the co-
variant representation of t(0), t„one could not
obtain a metric-free-position measure of m. ]

Statement 3, the metric probability postulate,
can be justified by the following. Consider that
there is given a sandy beach. Also given is one
black grain of sand among the white grains of the
beach. Further, if a number of observers on the
beach had buckets of various sizes, and each of

0
FIG. 2. An idealized measurement.

X

FIG. 3. Analysis of the idealized measurement.
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the observers filled one bucket with sand, one
could ask the following: What is the probability
that a particular bucket contains the black grain?
The probability would, of course, be proportional
to the volume of the bucket.

Consider now the invariant volume element dVI
in Biemann geometry. One has that"

d VI = v'-g dx'dx'dx'dx4 .
In other words, if a space with coordinates x' had
a fluctuating metric g;„ the volume element dVI
would nonetheless be constant. It is reasonable,
then, to take v'-g as the probability density for
free space.

Consider again the sandy beach. Let the black
grain of sand be placed on the beach by an aircraft
dropping the grain over the geometric center of the
beach. Now the location of the grain is not random.
The probability of finding the grain increases as
one proceeds toward the center of the beach, so
that in addition to the volume of the bucket there is
also a term in the probability function mhich de-
pends on the distance to the beach center. In gen-
eral, then, we expect the probability function
P(x, f) to be P(x, t) =Au'-g, where A is a. function
analogous to the term in the example proportional
to the distance from the center of the beach.

Statement 4, the metric superposition postulate,
is adopted on the grounds of simplicity. Consider
the metric (for a given set of coordinates) g',-~~(x)

due to a given physical situation s1 as a function
of position x. Also let there be the metric g',.,'(x)
due to a different physical situation s2. What is
the metric due to the simultaneous presence of
situations s1 and s2? We are, of course, looking
for a representation to correspond to quantum-
mechanical linear superposition. The obvious and
most simple assumption is that

gqt = g Lg~„'(x)+ gq„'(x)] .
However, this assumption is in contradiction with
general relativity, a theory which is nonlinear in

g». The linearized general theory is still appli-
cable. Therefore, the metric superposition pos-
tulate is to be considered as an approximation to
an as yet unspecified full theory, valid over small
distances in empty or almost empty space.
Therefore, we expect that the quantum-mechani-
cal principle of linear superposition will break
down at some range. (This may eventually be the
solution to the linear-superposition-type paradox-
es in quantum mechanics. )

Statement 5, the metric 4 postulate, is not
basic to the theory. It exists simply as an ex-
pression of the following: There are at present
two separate concepts, the metric g;~ and the
wave function 4. It is an aim of this geometrical

approach to be able to express one of these quan-
tities in terms of the other. The statement that
in some arbitrary complex coordinate transfor-
mation the wave function is a component of the
metric is just a statement of this aim.

IV. PHYSICAL RESULTS

We derive first the motion of a test particle in
an otherwise empty space-time. The requirement
that the space is empty implies that the points in
this space are indistinguishable. Also, we expect
that, on the average, the space (since it is mass-
free) is Minkowski space.

Consider the metric tensor at a point 9,. Let
the metric at 8, be g'~„(a tilde over a quantity in-
dicates that it is stochastic). Since g,„ is stochas-
tic, the metric components do not have well-de-
fined values. We cannot then know g~„, but we
can ask for P(g~„), which is the probability of a
particular metric g „. Note then that for the case
of empty space, Pe, (g~„)=P»(g~„), where
Pe, (g„„)is to be interpreted as the probability of
metric g~„at point 61.

If one inserts a point test particle into the
space-time, with a definite position and (ignoring
quantum mechanics for a moment) momentum,
the particle motion is given by the Euler-La-
grange equations,

x'+(',„]Px'= O,

where (,'„}are the Christoffel symbols of the sec-
ond kind, and where P =dx~/ds and s can be either
proper time or any single geodesic parameter. "
Since g~„ is stochastic, these equations generate
not a path but an infinite collection of paths, each
with a distinct probability of occurrence from
P(g, „). (That is to say (',„]is stochastic; (~„j.)

In the absence of mass, the test-particle motion
is easily soluble. Let the particle initially be at
(space) point 9,. After time dt, the Euler-La-
grange equations yield some distribution of posi-
tion D, (x). [D,(x) represents the probability of the
particle being in the region bounded by x and x
+dx.] After another interval dt, the resulting dis-
tribution is D„,(x). From probability theory, "
this is the convolution,

D, (y)D.(x —y)dy,

but in this case, D, (x) =D,(x). This is so because
the Euler-Lagrange equations will give the same
distribution D, (x) independently of at which point
one propagates the solution. This is, of course,
because

gg (x) —=Igg (xg) gg (x2) ".]
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are identically distributed random variables.
Thus,

D, (x) ={D,(x),D,(x), , )
are also identically distributed random variables.
The motion of the test particle is the repeated con-
volution D,„„.. .(x), which by the central-limit
theorem" is a normal distribution. Thus the po-
sition spread of the test particle at any time t& 0
is a Gaussian. The spreading velocity is found as
follows. After N convolutions (N largp), one ob-
tains a normal distribution with variance o',
which again by the central-limit theorem is N
times the variance of D, (x). Call the variance of

D, (x) a,

Var(D, ) = a .
The distribution D, is obtained after time dt. After
N convolutions,

This is obtained after N time intervals dt. One
then has

4x' Na
&t N

which is to say that the initially localized test
particle spreads with a constant velocity g. In or-
der that the result be frame independent, g= c,
and one then has the results of quantum mechanics.
At the beginning of this derivation it was given that
the particle had an initial well-defined position and
also momentum. If for the benefit of quantum me-
chanics we had specified a particle with a definite
position, but with a momentum distribution, one
would have obtained the same result but with the
difference of having a different distribution D, due
to the uncertainty of the direction of propagation of
the particle.

In the preceding, we have made use of various equa-
tions. It is then appropriate to say a few words
about what equations mean in a stochastic space-
time.

Since in our model the actual points of the space-
time are of a stochastic nature, these points can-
not be used as a basis for a coordinate system,
nor, for that reason, can derivatives be formed.
However, the space-time of common experience
(i.e., the laboratory frame) is nonstochastic in the
large. It is only in the micro world that the sto-
chasticity is manifested. One can then take this
large-scale nonstochastic space-time and mathe-
matically continue it into the micro region. This
mathematical construct provides a nonstochastic
space to which the stochastic physical space can
be referred.

The (physical) stochastic coordinates f' then are
stochastic only in that the equations transforming
from the laboratory coordinates x' to the physical
coordinates 7' are stochastic.

For the derivation of the motion of a free parti-
cle we used Statement 1, Mach's principle. We
will now use also Statement 2, the contravariant
observable theorem, and derive the uncertainty
principle for position and momentum. Similar ar-
guments can be used to derive the uncertainty prin-
ciple for other pairs of conjugate variables. It
will also now be shown that there is an isomor-
phism between a variable and its conjugate, and
covariant and contravariant tensors.

We assume now that we are able to define a La-
grangian L. One defines a pair of conjugate vari-
ables as usual,

BL
P~= ~ ~ .

eq

Note that this defines P&, a covariant quantity, so
that a pair of conjugate variables so defined con-
tains one covariant and one contravariant member
(e.g. P& and q ). But since P& is covariant, it is
not observable in the laboratory frame. The ob-
servable quantity is just

pi gd~p

but g„„is stochastic so that P is a distribution.
Thus if one member of an observable-conjugate-
variable pair is well defined, the other member
is stochastic. By observable conjugate variables
we mean not, say, P&, q~ derived from the La-
grangian, but the observable quantities P~, q~,
where P~= g~"P„; i.e. both members of the pair
must be contravariant.

However, we can say more. Indeed, we can de-
rive an uncertainty relation. Consider

~e'~'= ~e'&(t g"')

What is the minimum value of this product, given
an initial uncertainty &q ? Since P& is an inde-
pendent variable, we may take AP&= 0 so that

dd" = &(P~"')=P„ng" .

In order to determine 4g"' we will argue that the
variance of the distribution of the average of the
metric over a region of space is inversely pro-
portional to the volume,

Var — g

In other words, we wish to show that if we are
given a volume and if we consider the average val-
ues of the metric components over this volume,
then these average values, which of course are
stochastic, are less stochastic than the metric
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Also, for convenience, let

f „ t e, (Z. )=fe,(C'
We now require

2

barf�((et+ez+

~ ~ ~ +em&/m) =&&(&e,+ e2+ ~ ~ ~ +e )/m) ~

where f&e &
is normally distributed. Now again the

convolute f,e,e &(g „) is the distribution of the
2

sum of g~„at 6, and g~„at 8„

f(e,.e, )
= fe K )fe(4 a'

where g' „ is defined to be g„„at8,. Here, of
course, fe =fe as the space is empty so that

f(e,+ez&/2=f(g, „/m «t et+gal~/2 at 82)

is the distribution of the average of g„„at9, and

g» at 8,. o'&e +e +...,8 &
is easily shown from the

theory of normaf distributions to be
20'(e ~e ~. ..+e )

= BlVe
1 2 m

Also, f&e .e, . ...e &
is normal Hence. ,

2 2
2 Pl 0'8 g e
((e,+e + ~ ~ ~ +e~) /m) ~22

component values at any given point in the volume.
Further, we wish to show that the stochasticity,
which we can represent by the variances of the dis-
tributions of the metric components, is inversely
proportional to the volume. This allows that over
macroscopic volumes the metric behaves classi-
cally (i.e., according to general relativity).

For simplicity, let the distribution of each me-
tric component at any point 9 be normal,

1 1gvf "~")= ~(2~)'/' '~
Note also that if f (y) is normal the scale transfor-
mation y-y jm results in f (y jm) which is normal
with

02
2

O'(y(m) =

age of the metric over the region is normal.
Therefore, in as far as we do not consider parti-
cles to be "point" sources, we may take the me-
tric fluctuations at the location of a particle as
normally distributed for each of the metric com-
ponents g~„. However, note that this does not im-
ply that the distributions for any of the metric
tensor components are the same for there is no
restriction on the value of the variance o' (e.g. ,
in general, f&; &If«&). Note also that the condi-~l 1 ~ 22
tion of normally distributed metric components
does not restrict the possible yarticle probability
distributions, save that they be single-valued and
non-negative. This is equivalent to the easily
proved statement that the functions

1 1 x —n
(27«r)' ' 2 (/

are complete for non-negative functions.
Having established that

+e2+' ' '+em O~e
Var

m m '

consider again the uncertainty product,

gql~t P tu lggvl

hq' goes as the volume [volume here is V' (the
one-dimensional volume]. hg"' goes inversely as
the volume so that P„4g'&g"' is independent of the
volume; i.e. as one takes q' to be more localized,
P' becomes less localized by the same amount,
so that for a given covariant momentum P/ (which
we will call the proper momentum), P„ttq'kg"'=k,
if also P„ is uncertain,

P„t&.q't&g"' ~ k

The fact that we have earlier shown that a free
particle spreads indicates the presence of a min-
imum proper momentum. If the covariant mo-
mentum were zero, then the observable contra-
variant momentum P'=g""P, would also be zero
and the particle would not spread. Hence,

or the variance is inversely proportional to the
number of elements in the average, which in our
case is proportional to the volume. For the case
where the distribution f& &

is not normal, but
pv

also not "pathological", the central-limit theorem
gives the same results as those obtained for the
case where f&, &

is normal. Further, if the func-
tion f& &

is not normal, the distribution
f«e, e, ...,e &/„& in the limit of large I is normal,

f((st+e2+ ~ ~ +em)/m) f&(/„g&„dv&/v&

In other words, over any finite {i.e., noninfinitesi-
mal) region of space, the distribution of the aver-

or in general,

t q't (P„„g"')= ttq'/&, P' & k „,
which is the uncertainty principle.

With the usual methods of quantum mechanics,
one treats as fundamental not the probability den-
sity P(x, t), but the wave function 4 [4*4=P(x, t)
for the Schrodinger e(luation]. The utility of using
4 is in that 4 contains phase information. Hence,
by using + the phenomenon of interference is pos-
sible. It might be thought that our stochastic
space-time approach, as it works directly with
P(x, t), might have considerable difficulty in pro-
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ducing interference. In the following, it wi. .l be
shown that Statements 3 and 4 can produce inter-
ference in a particularly simple way.

Consider again the free particle in empty space.
By considering the metric only at the location of
the particle, we can suppress the stochasticity by
means of Statement 1.5. Let the metric at the lo-
cation of the particle be g,„. We assume, at pre-
sent, no localization, so that the probability dis-
tribution P(x, t)=constant. P(x, t)=Ax' —g by
Statement 3. Here A is just a normalization con-
stant so that v'-g= constant. We can take the con-
stant equal to unity.

Once again, the condition of empty space implies
that the average value of the metric over a region
of space-time approaches the Minkowski metric
as the volume of the region increases.

Now consider, for example, a two-slit exper-
iment in this space-time. Let the situation where
only slit one is open result in a metric g~„. Let
the situation where only slit two is open result in
a metric g"„. The condition that both slits are
open then, by Statement 4, results in

g82 1(gal +g82)

Let us also assume that the screen in the experi-
ment is placed far from the slits so that the indi-
vidual probabilities (-g" )' ' and (-g" )' ' can be
taken as constant over the screen.

Finally, let us assume that the presence of the
two-slit experiment in the space-time does not
appreciably alter the situation that the metrics
g"„and g"„are in the average g~„ that is to say
that the insertion of the two-slit experiment does
not appreciably change the geometry of space-
time).

It is of interest to ask what one can say about
the metric g~„. If the particle is propagated in,
say, the x' direction and, of course, also in the x'
direction, we might expect that the metric be
equal to the Minkowski metric g„„, save for g33
and g«. We will then take the following:

1000
0 1 0 0

0 0 s 0
0 0 0

utility of which will be seen shortly.
Let s = e', where n is some unspecified function

of position. Consider the following metrics:

1 0 0
0 1 0

0 0 cia 0
0 0 0 -e'~

1 0 0
0 1 0tv
0 0 8' 0
00 0

where P is again some unspecified function of
position;

( (gl ()1/2 —
( (g82 ()1/2

(note (-,'X„(=,-', (a„(),
( (p3 (}1/2 (-1($81 A@2 (}1/2

[ -l(2 l(n 8) -j-(n-2))]l/2
X6

(- (g,"„()"'=l (
cosl(~ —P) (,

where
( (

indicates absolute value. This is, of
course, the phenomenon of interference. The
metrics g"„,g"„andg~„describe, for example, the
two-slit experiment described previously. The anal-
ogy of the functions e' and e ' with 4' and 4* is
obvious. The use of complex functions in the
metric, however, is unphysical. The resultant
line element ds2=g „dx"dx" would be complex and
hence unphysical. The following question arises:
Can we reproduce the previous arguments, but
with real functions? The answer is yes, but first
we must digress briefly to discuss quadratic-form
matrix transformations. "

Let

dx'
dx2

dx
dx4

and again let

G=llg, „ll .

(g,"„(= st, —

where s and t are as yet unspecified functions of
position. In order that (g~'„( be constant, let
s=t ' so that

Now we will introduce an unphysical situation, the

Then X'G X=ds'= g„„dx'dx", where X' is the
transpose of X. Consider transformations which
leave the line element ds2 invariant. Given a
transformation matrix W,

and

X'GX=X' G'X' =(X'(W ) ')G'(W 'X)
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[note: (WX')'=X"W "] However, X'GX
=—(X'(W') ')(W'GW)(W 'X) so that

In other words, the transformation W takes 6 into
IV'GR'. Now in the transformed coordinates a
metric g"„-=G" goes to W'G" W. Therefore,

(
~

WtGslW~ )1/2

e*e =( -'i W'G"W+ W'G"Wi)'/'
3 3 ]g

[
~

Wt(Gs&+ Gss) W~ ]&/&

4) 3 41
X ~~X ~~X t

which is to say that with an appropriate coordinate
system which is complex, we can treat the free-
space probability distributions 4*4 in a particu-
larly simple way. Since the components x~ do not
appear in predictions (such as 4*4'), we may sim-
ply, as an operational convenience, take g~„ to be
diagonal, but with complex components.

V. DISCUSSION

If we can find a transformation matrix W' with the
properties

The appropriate matrix W is

0 0 0
0 1 0 0

v2 v2

1
W2 W2

If, as previously,

1 0 0
0 1 0

0 0 e'~ 0
0 0 0 -e 'I

1 0
0 1

0
0 = llg,"„'ll = W'g", „W,

0 0 —cosn sinn
0 0 sino. cosa

so that in order to reproduce the phenomenon of
interference, the stochastic metric g „will have
off-diagonal terms. Incidentally, the coordinates
appropriate to g„"„are

(ii) W is not a function of ot or P,
(iii) W'GW is a matrix with only real components,

then we will again have the interference phenom-
enon with g' „real, and again +,*+,= +,*4,= 1 and

& —P4'3*43= —, cos

Having recognized that quantum mechanics is
merely an operational calculus, and also having
observed that general relativity is a true theory of
nature with both an operational calculus and a
Weltanschauung, it has been attempted to generate
quantum mechanics from considerations of.the
structure of space-time. As a starting point we
have used a version of Mach's principle where in
the absence of mass space-time does not become
flat, but becomes undefined (or more exactly, not
well defined) such that Pe(g„„) is at a given point
6 the probability [in the Copenhagen sense"] dis-
tribution for g„„. From this, the motion of a free
(test) particle was derived. This is a, global ap-
proach to quantum theory. It should be noted that
there are two logically distinct approaches to con-
ventional quantum mechanics: a local formalism
and a global formulation. The local formalism
relies on the existence of a differential equation
(such as the Schrodinger equation} describing the
physical situation (e.g. the wave function of the
particle) at each point in space-time. The exist-
ence of this equation is operationally very con-
venient. On the other hand, the global formulation
(or path formulation, if you will) is rather like the
Feynman path formalism for quantum mechanics, "
which requires the enumeration of the "action"
over these paths. This formulation is logically
very simple, but operationally it is exceptionally
complex. %hat is required is a local formalism.
Statement 3, P(x, t) =A@'-g, is local and provides
the basis for the further development of stochastic
space-time quantum theory. Statements 1 and 3
are then logically related. The remaining State-
ments 2, 4, and 5 are secondary in importance.

The conclusion is that with the acceptance of the
statements, the following can be deduced:

(i}the motion of a free particle, and the spread
of the wave packet,

(ii) the uncertainty principle,
(iii) the nature of conjugate variables,
(iv) interference phenomena,
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(v) an indication of where conventional quantum
mechanics breaks down (i.e. the limited validity of
linear superposition).

This paper represents an early stage of a theory.
What is ultimately required is a set of "field"
equations (analogous to the general-relativity field

equations) which relate the mass distribution in
the space-time to the stochasticity so that one can
calculate P(x, f) for all situations.

I should like to acknowledge my debt to Dr. David
Stoler for useful discussions of the ideas of this
paper.
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